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Electromagnetic Waves in a Cylindrical
Waveguide with Infinite or Semi-Infinite

Wall Corrugations

S. LENNART G. LUNDQVIST

Abstract — The electromagnetic waves inside a circular waveguide having

a periodically varying radius with corrugations of infinite or semi-infinite

e~tent are considered. The infinitely corrugated waveguide is investigated

by use of the null field approach, and some plots of the aYial wavenumbers

are presented. For a junction between a straight and a corrugated wave-

guide, the reflection and transmission coefficients are determined by mode

matching, and some computations of these reflection coefficients are also

given.

I. INTRODUCTION

I N THE FIRST part of the present paper we investigate

the propagating and nonpropagating electromagnetic

modes in a circular waveguide with a periodically varying

radius and a perfectly conducting wall. The fields inside

the waveguide and the axial wavenumbers are determined

using the null field approach. The same approach has

previously been used by Bostrom [1] to determine the

stopband and passband structure for the same problem.

Lundqvist and Bostrom [2] have considered the corre-

sponding acoustic problem with waves in ducts with in-

finite, semi-infinite, or finite wall corrugations and

Sandstrom [3] has considered the two-dimensional prob-

lem with modes in corrugated waveguides.

For small wall corrugations, further references are given

in the review article by Asfar and Nayfeh [4]. For the

problem under consideration, Kheifets [5] has developed a

method for finding approximate analytic solutions for

slowly varying boundaries. For small wall corrugations,

Asfar and Nayfeh [6] have proved that modes become

exponentially decreasing when they propagate in opposite

directions and their axial wavenumbers differ by a multi-

ple of the wavenumber of the waveguide.

From the numerical results below, it is observed that the

axial wavenumbers never coincide as the-frequency varies,

except possibly at isolated frequency points. This property

imposes some predictable features on the solutions when

the mode is exponentially decreasing along the waveguide.

Some of these features have been proved for the Hill

equation and noticed in other periodic structures (cf. the

review article by Elachi [7]).
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In the second part of this paper we compute the reflec-

tion and transmission matrices for a junction between a

straight and a corrugated waveguide. From these matrices,

and a building-block method, it is a simple matter to

compute the reflection and transmission for a finite cor-
rugated part in an otherwise straight waveguide (cf. [2] and

[8]).

IL THE MODES IN A CORRUGATED WAVEGUIDE

Consider a cylindrical waveguide with a periodically

varying circular cross section. In cylindrical coordinates

the radius p thus varies along the waveguide axis z as

p = R ( z), where R(z) is periodic in z with period 2b. The
wall corrugation is assumed to be even and the time

harmonic dependence e – ‘“r is assumed and suppressed.

For an isotropic, homogeneous, an~ 10SS1CSSmedium inside

the waveguide, the electric field E (or the magnetic field

H) satisfies the homogeneous vector Helmholtz equation

vxvx~–k2~=0 (1)

where the wavenumber k = u/c is real and c is the veloc-

ity of light. The wall of the waveguide is assumed to be

perfectly conducting:

flx-i(~)=o (2)

where i is the outward-pointing unit normal.

As in the case of Bostrom [1], the even modes in the

corrugated waveguide can be defined as

““{2~,l(*)e’’’z( 8,1cos(m@)+ 8T2sin (m@))} (4)

with y“ the mode number, r =1,2 for TE and TM waves,

m=0,1,2,. ... eO=lande~, =2 form #0, andq=(k2–

h z)1/2 with Im (q) >0. The + (–) denotes modes that

propagate in the positive (negative) z direction and Jti, is

the Bessel function of order m. For the odd-mode solu-

tions, the Kronecker deltas just switch places. The triplet
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rmj corresponds to the usual enumeration of waveguide

modes, so that ~=1, m=l, and j=2designates the TE12

mode. Note that we maintain the TE and TM names in

spite of the fact that the actual modes in a corrugated

waveguide are not of the transverse electric or magnetic

type.

The infinite set of constants ti,mj.,, is determined from

(apart from the normalization which is discussed in the

next section)

i ~ Q$:~,,.(hrn,,)a,m,n,rr=o (5)
~,,=1 ,~=—~

and the axial wavenumbers h ,Wj are given by the values

-where the Q matrix is singular:

det{Q$t~,,.(h)} =0. (6)

The elements of the Q matrix are given by

where nP = i?.fi and

6,W1(h; F)=k-’flx(v xRez(h; 7)). ~ (8)

For this particular choice of ~,., the modes (3) are valid~n

the whole waveguide (cf. Millar [9]). Other forms of G;w

are possiblp, corresponding to different expansions of the

surface field, but these expansions are valid only on the

surface. An expansion of the surface field in trigonometric

functions, for instance, gives (for even modes)

From (3) it is apparent that if h satisfies (6), then

h + p n/b (for any integer p) is also a solution. Thus, to

determine a mode unambiguously, both the axial wave-

number h,., ] and all constants aTwZj~~,are required. If one

solution corresponds to an axial wavenumber h, then the

complex conjugate of h is also associated with a solution.

If we change z for – z (a solution is equally a solution

when it propagates in the opposite direction for an even

periodic boundary) we see that – h gives a solution. Thus

if Re(h) # pr/b –Re(h), for any integer p, and Ire(h) #

O, four different solutions exist corresponding to h, h*,

–h, and – h*.

III. WAVEGUIDES WITH SEMI-INFINITE

WALL CORRUGATIONS

We let the cwen electric modes be defined as in (3) in the

previous section and we now fix the normalization. We

impose a normalization that gives the modes unit energy

flux along the waveguide for propagating modes; i.e., we

set the z component of the complex Poynting vector,

integrated over the cross section at z = O, equal to unity

(for simplicity we now suppress the ~ and m indices):

i
I ( 1 )*

~,kx y7x$* .d?=l (lo)
:=()

and from a numerical point of view they are “almost

orthonormal,” i.e.,

where c is of order 10 – 3. Huang [10] has studied modes in

waveguides that are “almost orthonormal.”

The even modes in the straight waveguide are defined by

tir~l, (F) = Re ~,~( + HT~j; 7) (12)

with .JJ(eQTM,) = Ofor ~ =1 and Jnl(eQT~j) = O for ~ = 2.

where e is the radius of the straight waveguide and QT~j

= [k’ - H&,,) l/2 with Im Q,~J z O. We impose the nor

realization (10) also on these modes and they are both

complete and orthogonal.

Consider now a junction between a straight waveguide

for z <0 and a corrugated one for z >0. If we assume an

incoming mode in the straight waveguide, the solution in

the whole waveguide can be written as

(~ +~R;j$T, z~o

where R1l and T12 are the reflection and transmission

matrices. If we assume no discontinuity of the medium

inside the waveguide, the continuity of the transverse parl

of the electric and magnetic fields at z = O gives

.2x ~,+ + ~ R::rt X ij: = ~ ~:~t X G]: (14a)

J’ J’

2x(vx~)+~R::t2x(vx~7)

= ~Tyi(v xii):). (14b)

1’

To solve for the matrices R1l and T12, we project (14a) on
the system {v x ~, } and (14b) on { ~~ } and use the

orthogonality of {~ }:

8J,,,– R;;,, = ~ ~;?N
J’J”

(15)

J’

where

M,r,r=~=O[~X(VX ~)]dF

N=
11 f [(vx~)x~t].d~. (16)

Z=()

Accordingly we get

R1l = 2X (MJJ,, + NJJ/,)-lMJ/rJ/ + 8,J,11‘
J

,,

T12 = 2( MJJ, + NIJ!11’
~-,

(17)
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All the matrix elements of ~ and ~ can be computed

analytically. If we introduce the restriction m = 1 and

suppress the m value, in order to make the notation

simpler, we get (apart from the normalization factors)

+ {T,,7Tj,f(S,,l$ak + 8,J&1H,tJ h,,n/k)} (18)

where

( (q~n - Q:,)-’{~,,neJ,(qr,ne)Jo(Qr,e)

- Q.,,,eJ,(q,,.e)J,(Q,,e)
+ q,jneJ3(q,jne) J2(Q,,j,e)

{
- Q.jeJ~(~,Jne)J3(Q,Je)}.

TJn T’J’
2 # Q~/J/if q~jn

()
e2J$(Q,J.e)+ J~(Q,J.e) e’- &

TJ n

\
2_

if qTJn - Q?,

JI(qrjne)Jl(Qrje)
‘$ – ’21

TJnT’J’ —
%@,t]<

(19)

(20)

We have used the notation

h ,Jn=hTJ+n~/b

-( )(?TJ.– k’ – h:,n 1/2, ImqT~~ >0. (21)

If we instead assume an incoming mode in the corru-

gated waveguide, the solution in the whole waveguide can

be written as

The continuity conditions and the same projections de-
termine R 21 and T21 in a way similar to (17). From

reciprocity y it follows that R1l and R22 are symmetric

matrices and that ~~~ = ~~~. These features are used as a

check.

IV. NUMERICAL RESULTS AND DISCUSSION

In the numerical computations we have used a wave-

guide where the radius of the wall, R(z), is given by

()
R(z)= a+dcos : . (23)

a

The mean diameter is thus equal to the wavelength of the

TABLE I

C(J ! -ON AND RI, SONANCE FREQUENCIES FOR AN INFINITESIMALLY

C[]RRIIGATELI WAVEGUIDE, TOGETHER WITH THE RESONATING

MODLS, PROPAGATION IN THE OPPOSITE OR SAME DIRECTION,

AND THE RESULTING INTERFERENCE TYPE, FOR A WAVEGUIDE

WITH MLAN DIAMETER EQUAL TO THE PERIOD OF THE WALL

h d modes directions type

1 X41
2420
3,641
3.832
3838
4141
4.440
4.955
5,059
5.331
5367
5454
5.558
5.622
5.711
5.X52
6078
6188
6.315
6.544
6655
6.9X2
7.016

TE1 ,

TE1lTE,,
TE1lTE1l

TM,,

TEllTMil

TM1lTMll
TEIITMI,
TMIITMII
TEIITEI1

TE12

TM11TE12
TE1 ~TE12

TEJZTE12
TEIITMII

TM11TE12
TELITE12

TM1lTMII

TE12TE12

TE11TE12

TEIITE1l
TE12TM11
TEIITM1l

TM,2

opposite
opposite

same

opposite
opposite
opposite

opposite

same

opposite
opposite
opposite
opposite

same
opposite
opposite
opposite
opposite
opposite
opposite

cut-on
stopband
stopband
cut-on
crossover
stopband
stopband
stopband
stopband
cut-on
crossover
stopband
stopband
stopband
stopband
crossover
stopband
stopband
stopband
stopband
stopband
stopband
cut-on

wall corrugations. We further specialize to the case m = 1

as the fundamental mode TEII has this m value.

For the straight cylinder, the frequency points where

two axial wavenumbers differ by a multiple of 7r/a (the

wavenumber of the corrugated wall) are presented in the

first column of Table I. In the second column the inter-

acting modes are labeled and the third column states if the

modes propagate in the same or opposite directions. Table

I also shows the type of interference; stopband if the

resulting imaginary part differs from zero; otherwise cross-

over. This last column is determined by inspection of the

numerical data. The resulting resonances follow a simple

scheme: two modes propagating in the same (opposite)

direction give rise to a crossover (stopband). For moderate

undulations this has been proved by Asfar and Nayfeh [6]

for interferences between TE-TE modes and TM-TM

modes. We note that the results of Table I (and also of

Figs. 1–4 below) are not in close accordance with those of

Bostrom [1]. However, this is due to a programming error

in [1] (see [11]).

In Figs. 1 and 3 the real part of the axial wavenumber is
plotted as a function of frequency and in Figs. 2 and 4 the

corresponding imaginary part is presented, for corruga-

tions d/a = 0.10 and 0.20, respectively. In all of the fig-

ures the lowest mode, TE 11, is drawn with a solid line, the
TMI, mode with a dashed line, the TE12 mode with a

dash-dotted line, and the TM12 mode with a dotted line.

The crossover between the TEII and TMII modes around

ka = 3.83 is easily recognized for d/a = 0.10 and, as for

the crossover interference between the TEII and the TE12

modes around ka = 5.95, it has been plotted with some

overlap. In Figs. 3 and 4 (d/a = 0.20) these crossover

resonances have disappeared. The crossover between the
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Fig. 3. The real part of the axial wavenumber as a function of frequency
for corrugation d\a = 0.20.

TE12 and TMII modes at ka = 5.33 (cf. Table I) has

already disappeared in Figs. 1 and 2. The development

between the two states can be interpreted as a result of

degeneracy at a point for the axial wavenumber. As the

corrugation increases from d\a = 0.10 to 0.20, the stop-

band initially at ka = 3.64 broadens and a point is reached

wavenumber.

where the imaginary part of the TEII mode coincides with

the imaginary part of the cutoff TMII mode. At this point

the real parts of the axial wavenumbers are also identical

(they only differ by an immaterial n/a). A degeneration

(double) point has occurred and the crossover interference

takes place here. for the crossover interference between

TM I ~ and TE12, the double point has just emerged for

d/a = 0.10 and occurs approximately at the cut-on

frequency for the TE12 mode; it is recognizable as the top

of the peak at ka = 5.30 for the TMI1 mode.

In all the stopbands presented, the real parts of the axial

wavenumbers satisfy simple relations. For an interaction

between one mode and itself, traveling in the opposite

direction, the sum of the absolute values of the real parts

of the axial wavenumbers equals a multiple of the wave-

number of the cylinder: Re ( hl + h ~) = rep/a (note that in

the figures we have plotted h/k). The interferences where

p = 1 in Fig. 3 are located around ka = 2.48 for the TEII

mode, ka = 4.15 for the TMII mode, ka = 5.70 for the

TE12 mode, and ka = 6.80 for the TM12 mode. For p = 2

the interferences occur around ka = 3.50 and 3.75 for the

TEII mode and ka = 5.00 for the TMII mode. For p = 3

the frequency domains are situated around ka = 5.00 and

5.25 for the TEII mode and at ka = 6.00 and ka = 6.65 for

the TMII mode. Finally, for p =4, they are at ka = 6.30

and ka = 6.70 for the TEII mode.

In a stopband due to an interference between two differ-

ent modes, the same relation holds, RE(hl + h ~) = rp\a

and Im ( hl ) = Im( h 2), but with the extra condition Re(hl)

# rep/a # Re ( h z). All stopbands not enumerated above

are of this type. For the TEII and TMII mode this type of

interference occurs in Fig. 3 around ka = 3.63 (at the dip

for the TEII mode), ka = 4.55, 5.60, and 6.95. The coinci-

dence of the imaginary parts is sometimes hard to observe
in the figures, but could always be recognized by the

appearance of the real parts and the fact that outside the

stopbands the real parts of all the axial wavenumbers

always increase which increasing frequency.

Both types of interference conditions preserve the total

number of axial wavenumber solutions that exists outside
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the stopband. In a stopband due to an interference of a

mode with itself, two different axial wavenumber solutions

exist (Al and – hl, since h~ = – hl+ p~/a for some

integer p ) corresponding to two solutions outside (h ~ and

– h ~). For the other stopbands four solutions exist inside

the stopband (h ~, – hl, h? and – h~), exactly as many as
outside the stopband (corresponding to h ~, — hl, h ~ and

– hz).

In the opposite way around, if we impose that the

number of possible axial wavenumber solutions should be
equal inside and outside a stopband, the interference con-

ditions above follow. It is observed in several periodic

contexts (for instance, the Hill equation [2], [3], [7]) that

the real part of the axial wavenumber is constant in

stopbands. This can thus be interpreted as a conservation

restriction on the number of solutions.

For a more detailed discussion of the axial wavenumber

dependence as the corrugation increases, we refer the

reader to Lundqvist and Bostrom [2], where the analogous

acoustic case is treated.

In Figs. 5 and 6 the reflected energies (I R1lI 2, are

plotted for an incoming TE II mode in a straight cylinder

impinging upon a junction between a straight and a cor-

rugated waveguide, for corrugations d/a = 0.10 and 0.20,

respectively. To make comparisons with Figs. 1 to 4 easier,

the energies are plotted against ka, where a is the mean

radius in the corrugated waveguide. The junction is situated

at the maximum radius in the corrugated waveguide; the

radius in the straight waveguide is thus e = a -t d. Three

nonpropagating modes are used in the computations, but

only the modes that are cut on for the straight cylinder are

plotted. We plot the reflected energy in the TEII mode

with a solid line and the reflected energy in the TMII

mode with a dashed line.

Around ka = 2.45 in Figs. 5 and 6, and below the cut-on

of the TEII mode in the corrugated waveguide, no mode is

propagating in the corrugated waveguide and accordingly

total reflection occurs. For ka >3.484 for d/a= 0.10 and

ka & 3.193 for d/a = 0.20, two modes are propagating in

the straight waveguide. In the stopband around ka = 3.64

in Figs. 5 and 6, the sum of the reflected energies from the

two propagating modes equals one, with an error less than

10-3.

At higher frequencies the reflection coefficients become

very irregular and since the accuracy decreases with in-

creasing frequency and with the number of cut-on modes

in the corrugated waveguide, in Figs. 5 and 6 we plot only

the frequency range with at most one mode cut on in the

corrugated part.

In conclusion, both propagating and nonpropagating

modes in a sinusoidally corrugated waveguide have been

computed by using the null field approach. The junction

between a straight and a corrugated waveguide has also

been considered and as in the analogous acoustic case [2] it

would be easy to compute the reflection and transmission

from a finite corrugated section.
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