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Electromagnetic Waves in a Cylindrical
Waveguide with Infinite or Semi-Infinite
Wall Corrugations

S. LENNART G. LUNDQVIST

Abstract — The electromagnetic waves inside a circular waveguide having
a periodically varying radius with corrugations of infinite or semi-infinite
extent are considered. The infinitely corrugated waveguide is investigated
by use of the null field approach, and some plots of the axial wavenumbers
are presented. For a junction between a straight and a corrugated wave-
guide, the reflection and transmission coefficients are determined by mode
matching, and some computations of these reflection coefficients are also
given.

1. INTRODUCTION

N THE FIRST patt of the present paper we investigate
Ithe propagating and nonpropagating electromagnetic
modes in a circular waveguide with a periodically varying
radius and a perfectly conducting wall. The fields inside
the waveguide and the axial wavenumbers are determined
using the null field approach. The same approach has
previously been used by Bostrom [1] to determine the
stopband and passband structure for the same problem.
Lundqvist and Bostrom [2] have considered the corre-
sponding acoustic problem with waves in ducts with in-
finite, semi-infinite, or finite wall corrugations and
Sandstrém [3] has considered the two-dimensional prob-
lem with modes in corrugated waveguides.

For small wall corrugations, further references are given
in the review article by Asfar and Nayfeh [4]. For the
problem under consideration, Kheifets [5] has developed a
method for finding approximate analytic solutions for
slowly varying boundaries. For small wall corrugations,
Asfar and Nayfeh [6] have proved that modes become
exponentially decreasing when they propagate in opposite
directions and their axial wavenumbers differ by a multi-
ple of the wavenumber of the waveguide.

From the numerical results below, it is observed that the
axial wavenumbers never coincide as the-frequency varies,
except possibly at isolated frequency points. This property
imposes some predictable features on the solutions when
the mode is exponentially decreasing along the waveguide.
Some of these features have been proved for the Hill
equation and noticed in other periodic structures (cf. the
review article by Elachi [7]).
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In the second part of this paper we compute the reflec-
tion and transmission matrices for a junction between a
straight and a corrugated waveguide. From these matrices,
and a building-block method, it is a simple matter to
compute the reflection and transmission for a finite cor-
rugated part in an otherwise straight waveguide (cf. [2] and

[8D.

II. THE MODES IN A CORRUGATED WAVEGUIDE

Consider a cylindrical waveguide with a periodically
varying circular cross section. In cylindrical coordinates
the radius p thus varies along the waveguide axis z as
o = R(z), where R(z) is periodic in z with period 2b. The
wall corrugation is assumed to be even and the time
harmonic dependence e '®’ is assumed and suppressed.
For an isotropic, homogeneous, and lossless medium inside
the waveguide, the electric field E (or the magnetic field
H) satisfies the homogencous vector Helmholtz equation

VXVXE-K(E=0 (1)

where the wavenumber k = w/c is real and c is the veloc-
ity of light. The wall of the waveguide 1s assumed to be
perfectly conducting:

AXE(F)=0 (2)
where 7 1s the outward-pointing unit normal.

As in the case of Bostrém [1], the even modes in the
corrugated waveguide can be defined as

2
W (F) =X
T'=1n

o0

a’Tﬂlj}]’TlRe if'm(i h‘rmj + nW/b; 7)

(3)

= -0

where

€. Kk .
Re X, (h;7) =\ o ;(k“lv x)

(20,(ap) (8, 005(m) + 8,05in (ma))} (4

with j the mode number, +=1,2 for TE and TM waves,
m=0,1,2,---,ep=1and €, =2 for m+ 0, and g = (k> —
h2)y/? with Im(q) = 0. The + (—) denotes modes that
propagate in the positive (negative) z direction and J,, is
the Bessel function of order m. For the odd-mode solu-
tions, the Kronecker deltas just switch places. The triplet

0018-9480,/88 /0100-0028301.00 ©1988 IEEE



LUNDQVIST: ELECTROMAGNETIC WAVES IN CYLINDRICAL WAVEGUIDE

Tmj corresponds to the usual enumeration of waveguide
modes, so that 7=1, m=1, and j =2 designates the TE,,
mode. Note that we maintain the TE and TM ndmes in
spite of the fact that the actual modes in a corrugated
waveguide are not of the transverse electric or magnetic
type.

The infinite set of constants &, ,, is determined from
(apart from the normalization which is discussed in the
next section)

Z Z Qi’:lr) T’ n( Tnlj)aijnT" =0 (5)

7"=1n=—0o0
and the axial wavenumbers k., are given by the values
‘where the Q matrix is singular:
det { Q7). (1)} = (6)

The elements of the Q matrix are given By

k (2q
G (k) =+ [do[* ReX,,(h+n'n/b,R(2),9,2)
b -b

-G, (h+nm/b, R(z),d;,z)R(z)-ii (7)

P
where n,=7-p and

G, (h;7) =k'Ax(v xRexX(h; 7). . (8)
For this particular choice of G, the modes (3) are valid [ in
the whole waveguide (cf. Millar [9]). Other forms of G.
are possible, corresponding to different expansions of the
surface field, but these expansions are valid only on the

surface. An expansion of the surface field in trigonometric
functions, for instance, gives (for even modes)

Tm(h )=elhz(¢;cos(m¢)8'rl+ﬁXq;Sin(mq)),(STZ)‘
(9)

From (3) it is apparent that if & satisfies (6), then
h+ pm/b (for any integer p) is also a solution. Thus, to
determine a mode unambiguously, both the axial wave-
number 4, and all constants «,,, ;. are required. If one
solution corresponds to an axial wavenumber /, then the
complex conjugate of 4 is also associated with a solution.
If we change z for —z (a solution is equally a solution
when it propagates in the opposite direction for an even
periodic boundary) we see that — / gives a solution. Thus
if Re(h) # pm/b—Re(h), for any integer p, and Im(h) #
0, four different solutions exist corresponding to h, h*,
— h, and — h*.

1I1. WAVEGUIDES WITH SEMI-INFINITE
WALL CORRUGATIONS

We let the even electric modes be defined as in (3) in the
previous section and we now fix the normalization. We
impose a normalization that gives the modes unit energy
flux along the waveguide for propagating modes; i.e., we
set the z component of the complex Poynting vector,
integrated over the cross section at z =0, equal to unity

29

(for simplicity we now suppress the 7 and m indices):

i o (10)

“almost

x(vxwt)" dr=1

and from a numerical point of view they are
orthonormal,” i.e.,

1 for j=j

(1)

where € is of order 103, Huang [10] has studied modes in
waveguides that are “almost orthonormal.”
The even modes in the straight waveguide are defined by

%, (F) =Re X, (% H,p )5 F) (12)

with J./ (eQTm,) 0 for r=1and J,(eQ,,,;) =0 for 7=2.
where e is the radius of the straight waveguide and @,
=(k?—-H2, )" with ImQ,, > 0. We impose the nor-
malization (10) also on these modes and they are both
complete and orthogonal.

Consider now a junction between a straight waveguide
for z <0 and a corrugated one for z > 0. If we assume an
incoming mode in the straight waveguide, the solution ip
the whole waveguide can be written as

if Wit x(vx@i)*-ds%{
0

- € for j+ j

7+ LRyG,  2<0
= J
E(7) = 13
") S TR, z>0 13)

J

where R'! and T'? are the reflection and transmission
matrices. If we assume no discontinuity of the medium
inside the waveguide, the continiuity of the transverse part
of the electric and magnetic fields at z =0 gives

2XT! +ZR;/1,Z"><B’]7 =ZT122XW (14a)
J
e x (v ><Uf)+ZR§j,z‘><(v X7 )
=Y T2 X (v x5 ). (14b)
"

To solve for the matrices R!! and T2, we project (14a) on
the system {v X7} and (14b) on {7} and use the
orthogonality of {7 }:

8+ Rl = Z T, M
—- R, = Z TN, (15)
where
M= ][5 (v x5)]-as
Nyp=[_[(vx#7)xsi]-ds. (16)

Accordingly we get
11 _ -1
R//' - 2; (MJ/” + N//) ]\ljj * 8/1'
J

- (17)

T/}’z = 2( ]M//’ + Nu)
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All the matrix elements of M and N can be computed
analytically. If we introduce the restriction m=1 and
suppress the m value, in order to make the notation
simpler, we get (apart from the normalization factors)

0 2
Z Z aum’”

n=-o 17"=1

(&, (8,08, H, oy = 8,038,000k /H, )
& ppr (8dg Hoo o K+ 8,08,k ) )

T
M(m—l) I
’T/ T 7 2

TN

o0 2
Z Z aT_/nT”

n=—o0 7"=1

{gv’/n'r'/’(ST'l‘ST”lhT]n 8 '28 ”2H ! ')
+ gnn'r/ (8 ’187 7k + 81 28 “IH ! ’hrjn/k)}

N _N(m—l)_z

T/ 7' f 2

(18)

where
(‘]rzjn - 72'/) _1{ ‘IfjneJ1(qT,ne)Jo(QT'/e)
00l (0) Q)
+ qﬁner(qT,ne)Jz(Q e)
Cry = - T'j'eJZ(qune)J3(QT'j'e)} (19)
if g2, # Q%
2
53(0.6) 4 (0, = g |
if 45, =07
£ - l_Jl(‘ITjne)Jl(QT'j'e) . (20)
o GrynQ
We have used the notation
hyp="h,+nm/b
gy=(k2=12,)"",  Imgq,,>0. (21)

If we instead assume an incoming mode in the corru-
gated waveguide, the solution in the whole waveguide can
be written as

_,7 + ZR22—’+

JJ j ’
ZTzl——)_
J'

z>0

E(F) = (22)

z<0.

The continuity conditions and the same projections de-
termine R?? and T* in a way similar to (17). From
reciprocity it follows that R and R?* are symmetric
matrices and that T)2! = T,)?. These features are used as a
check.

IV. NUMERICAL RESULTS AND DISCUSSION

In the numerical computations we have used a wave-
guide where the radius of the wall, R(z), is given by

(23)

The mean diameter is thus equal to the wavelength of the

R(z) =a+dcos(faz).

TABLE I
CUI-ON AND RESONANCE FREQUENCIES FOR AN INFINITESIMALLY
CURRUGATED WAVEGUIDE, TOGETHER WITH THE RESONATING
MODLS, PROPAGATION IN THE OPPOSITE OR SAME DIRECTION,
AND THE RESULTING INTERFERENCE TYPE, FOR A WAVEGUIDE
WITH MLAN DIAMETER EQUAL TO THE PERIOD OF THE WALL

ha modes directions type

1 841 TE, — cut-on

2420 TE,,TE,, opposite stopband
3.641 TE,,TE opposite stopband
3.832 ™, — cut-on

3838 TE, TM,, same crossover
4141 T™M,; TM}, opposite stopband
4.440 TE, TM;, opposite stopband
4.955 T™,; TM opposite stopband
5.059 TE,,TE;, opposite stopband
5.331 TE,, — cut-on

5367 TM,,TE,, same crossover
5454 TE TE), opposite stopband
5.558 TE,,TE,, opposite stopband
5.622 TE;TM;, opposite stopband
5.711 TM|,TE,, opposite stopband
5.852 TE,TE;, same crossover
6078 ™, T™M, opposite stopband
6188 TE,,TE,, opposite stopband
6.315 TE, TE,, opposite stopband
6.544 TE,, TE, opposite stopband
6 655 TE,TM}, opposite stopband
6.982 TE, TM,, opposite stopband
7.016 T™,» — cut-on

wall corrugations. We further specialize to the case m =1
as the fundamental mode TE,; has this m value.

For the straight cylinder, the frequency points where
two axial wavenumbers differ by a multiple of #/¢ (the
wavenumber of the corrugated wall) are presented in the
first column of Table I. In the second column the inter-
acting modes are labeled and the third column states if the
modes propagate in the same or opposite directions. Table
I also shows the type of interference; stopband if the
resulting imaginary part differs from zero; otherwise cross-
over. This last column is determined by inspection of the
numerical data. The resulting resonances follow a simple
scheme: two modes propagating in the same (opposite)
direction give rise to a crossover (stopband). For moderate
undulations this has been proved by Asfar and Nayfeh [6]
for interferences between TE-TE modes and TM-TM
modes. We note that the results of Table 1 (and also of
Figs. 1-4 below) are not in close accordance with those of
Bostrom [1]. However, this is due to a programming error
n [1] (see [11]).

In Figs. 1 and 3 the real part of the axial wavenumber is
plotted as a function of frequency and in Figs. 2 and 4 the
corresponding imaginary part is presented, for corruga-
tions d/a = 0.10 and 0.20, respectively. In all of the fig-
ures the lowest mode, TE,,, is drawn with a solid line, the
TM,, mode with a dashed line, the TE;, mode with a
dash-dotted line, and the TM,, mode with a dotted line.

The crossover between the TE;; and TM;; modes around
ka = 3.83 is easily recognized for d/a =0.10 and, as for
the crossover interference between the TE,; and the TE,,
modes around ka =5.95, it has been plotted with some
overlap. In Figs. 3 and 4 (d/a = 0.20) these crossover
resonances have disappeared. The crossover between the
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Fig. 1. The real part of the axial wavenumber as a function of frequency ~ Fig. 4. The same as Fig. 3 but for the imaginary part of the axial
for corrugation d /a = 0.10. wavenumber.
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the real parts of the axial wavenumbers are also identical
(they only differ by an immaterial #/a). A degeneration
(double) point has occurred and the crossover interference
takes place here. for the crossover interference between
TM,; and TE,,, the double point has just emerged for
d/a =010 and occurs approximately at the cut-on
frequency for the TE,, mode; it is recognizable as the top
of the peak at ka = 5.30 for the TM; mode.

In all the stopbands presented, the real parts of the axial

1 2

7

Fig. 2. The same as Fig. 1 but for the imaginary part of the axial

wavenumber.

Re (h/Kk)

TE

7
Fig. 3. The real part of the axial wavenumber as a function of frequency
: for corrugation d /a = 0.20.

TE,, and TM,; modes at ka =533 (cf. Table I) has
already disappeared in Figs. 1 and 2. The development
between the two states can be interpreted as a result of
degeneracy at a point for the axial wavenumber. As the
corrugation increases from d/a =0.10 to 0.20, the stop-
band initially at ka = 3.64 broadens and a point is reached

wavenumbers satisfy simple relations. For an interaction
between one mode and itself, traveling in the opposite
direction, the sum of the absolute values of the real parts
of the axial wavenumbers equals a multiple of the wave-.
number of the cylinder: Re(h; + h,) = 7p/a (note that in
the figures we have plotted % /k). The interferences where
p =1 in Fig. 3 are located around ka = 2.48 for the TE;
mode, ka =4.15 for the TM;; mode, ka=5.70 for the
TE,, mode, and ka = 6.80 for the TM,, mode. For p =2
the interferences occur around ka = 3.50 and 3.75 for the
TE,; mode and ka =5.00 for the TM,; mode. For p =3
the frequency domains are situated around ka = 5.00 and
5.25 for the TE;; mode and at ka = 6,00 and ka = 6.65 for
the TM,; mode. Finally, for p =4, they are at ka =6.30
and ka = 6.70 for the TE;; mode.
In a stopband due to an interference between two differ-
ent modes, the same relation holds, RE(h,+ h,)=7p/a
and Im(h;) = Im(h,), but with the extra condition Re(%,)
#qp/a+ Re(h,). All stopbands not enumerated above
are of this type. For the TE;; and TM;; mode this type of
interference occurs in Fig. 3 around ka = 3.63 (at the dip
for the TE,; mode), ka = 4.55, 5.60, and 6.95. The coinci-
dence of the imaginary parts is sometimes hard to observe
in the figures, but could always be recognized by the
appearance of the real parts and the fact that outside the
stopbands the real parts of all the axial wavenumbers
always increase which increasing frequency.
Both types of interference conditions preserve the total
number of axial wavenumber solutions that exists outside
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Fig. 5 The reflection coefficients for the reflected modes TE,, (solid

line) and TM; (broken line) for the lowest mode, TE,,, impinging on
a junction between a sinusoidally corrugated wavegnide with d /a =
0 10 joined at its largest cross section to a straight waveguide.
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Fig. 6 The same as Fig. 5 but for d /a = 0.20

the stopband. In a stopband due to an interference of a
mode with itself, two different axial wavenumber solutions
exist (h; and —hy, since hif=—h,+ pm/a for some
integer p) corresponding to two solutions outside (%, and
— h,). For the other stopbands four solutions exist inside
the stopband (4, — Ay, A} and — ki), exactly as many as
outside the stopband (corresponding to #,, — hy, h, and
—h,).

In the opposite way around, if we impose that the
number of possible axial wavenumber solutions should be
equal inside and outside a stopband, the interference con-
ditions above follow. It is observed in several periodic
contexts (for instance, the Hill equation [2], [3], [7]) that
the real part of the axial wavenumber is constant in
stopbands. This can thus be interpreted as a conservation
restriction on the number of solutions.

For a more detailed discussion of the axial wavenumber
dependence as the corrugation increases, we refer the
reader to Lundqvist and Bostrém [2], where the analogous
acoustic case is treated.

In Figs. 5 and 6 the reflected energies (|R'|?) are
plotted for an incoming TE,, mode in a straight cylinder

impinging upon a junction between a straight and a cor-
rugated waveguide, for corrugations d/a = 0.10 and 0.20,
respectively. To make comparisons with Figs. 1 to 4 easier,
the energies are plotted against ka, where a is the mean
radius in the corrugated waveguide. The junction is situated
at the maximum radius in the corrugated waveguide; the
radius in the straight waveguide is thus e = a + d. Three
nonpropagating modes are used in the computations, but
only the modes that are cut on for the straight cylinder are
plotted. We plot the reflected energy in the TE,; mode
with a solid line and the reflected energy in the TM;,
mode with a dashed line.

Around ka = 2.45 in Figs. 5 and 6, and below the cut-on
of the TE,, mode in the corrugated waveguide, no mode is
propagating in the corrugated waveguide and accordingly
total reflection occurs. For ka > 3.484 for d /a =0.10 and
ka > 3.193 for d/a =10.20, two modes are propagating in
the straight waveguide. In the stopband around ka = 3.64
in Figs. 5 and 6, the sum of the reflected energies from the
two propagating modes equals one, with an error less than
1073,

At higher frequencies the reflection coefficients become
very irregular and since the accuracy decreases with in-
creasing frequency and with the number of cut-on modes
in the corrugated waveguide, in Figs. 5 and 6 we plot only
the frequency range with at most one mode cut on in the
corrugated part.

In conclusion, both propagating and nonpropagating
modes in a sinusoidally corrugated waveguide have been
computed by using the null field approach. The junction
between a straight and a corrugated waveguide has also
been considered and as in the analogous acoustic case [2] it
would be easy to compute the reflection and transmission
from a finite corrugated section.
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